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In this paper, a global modeling approach was proposed for multi sensor fusion problems. Once the global model was 
investigated considering the data association and fusion, it is adapted to track to track correlation problem by a new 
approach. The key development of the approach is that a decentralized filtering algorithm is used for data fusion and state 
estimation problems in a multi-target tracking system. The use of a global mapping matrix for the track to track correlation is 
key element of our technique. Via the presented mathematical models, the sensor fusion and track to track correlation 
problems can be solved in a global way. 
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1. Introduction 
 

The multi-target tracking systems using measurement 

data from multiple sensors have been investigated in a 

number of papers [1-9]. The major purpose of a multi-

sensor fusion approach is to complement the data of one 

sensor with that of another sensor in order to obtain better 

target measurement information and to make a more 

accurate estimation. 

Many advantages are obtained from the use of 

multiple sensors in a target surveillance system. A global 

modeling and a track to track correlation approach for 

multisensor problems are presented in this paper. They are 

also applied to multi-target tracking problems. A tracking 

system that includes more varied data from multiple 

sensors will greatly improve data association. 

The major problem in the fusion of track information 

is obviously the determination of overall distinct targets by 

the central tracking processor and for it to let each sensor 

know which ones among all the targets it is tracking [10-

25]. In our approach, a decentralized estimation algorithm 

with global modeling definitions is investigated. In order 

to solve the track-to track correlation problems, a mapping 

matrix is developed which arises in decentralized filtering 

which indicates the targets tracked by each individual local 

sensor. Utilizing this approach with local tracking systems, 

each sensor can perform a local data association and 

filtering on the group of targets that it is observing.  It 

produces its own estimate of the kinematic quantities 

associated with these targets. Then it transmits these 

estimates to a central processor, which combines this 

information to produce a global estimate of all targets. Via 

the proposed technique, the data fusion and track to track 

correlation are thus achieved simultaneously. 

 

 

2. Preliminaries 

 

Data fusion techniques are used in many tracking and 

surveillance systems to complement the data of one sensor 

with that of another sensor in order to obtain better target 

measurement information and to make a more accurate 

estimation [26-32]. Multisensor data fusion seeks to 

combine data from multiple sensors to perform inferences 

that may not be possible from a single sensor alone. 

The general attempts in multi sensor fusion problems 

is to employ a number of sensors and to fuse the 

information obtained from all these sensors on a central 

processor. A general multisensor tracking system is 

denoted in Fig. 1. 

The sensor-target space is in multiple form which 

includes multiple sensors and targets. In reality, the 

configuration in Fig. 1a is replaced by the 1b. Each sensor 

is spaced to see a few of the targets. Thus, some of the 

view of the fields can be joint. Any sensor can see the 

targets simultaneously seen by the other sensors at the 

same time. Detection of the targets seen by more than one 

sensor is a main consideration of the multisensor problems 

for multitarget tracking. In this work, a global approach is 

presented for the multisensor track to track correlation 

problems. 
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Fig. 1. View of multi sensor - multi target space. 

 

 
2.1 Centralized and decentralized architectures 

 

The general attempts in multi sensor fusion problems 

is to employ a number of sensors and to fuse the 

information obtained from all these sensors on a central 

processor. General solutions to the multi-sensor fusion 

problems were in two architectures. These were 

centralized and decentralized mechanizations respectively 

considered as the following Fig. 2, [10-17]. 
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Fig. 2. Centralized and decentralized Filters. 

 
The principles of both are analyzed taking 

consideration into the general and Kalman filtering 

approaches. First works in this field were based on the 

centralized network which is an organization of a feedback 

from the central processor to local processor units each of 

which includes a sensor and a local processor. Local 

estimations are then generated from the global estimation 

obtained from the previous step. The general configuration 

of this is given in Fig. 2. 

However, because of dense of computations in this 

configuration decentralized estimation algorithm was 

developed based on parallelization of the Kalman filter 

equations. The decentralized Kalman filtering is well-

known way in multi-sensor fusion problems that obtains 

the global estimation using only local estimates without 

transmission of information between sensors [18-25]. This 

was advantageous compared to the first attempts. In 

addition to the decentralized Kalman filter, the federated 

filter and the Bayesian were also alternative popular multi 

sensor fusion methods. 

All the methods described above require the use of the 

central processor in order to fuse information obtained by 

the sensors. The main disadvantage of this approach is that 
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in the case of central processing failure, the overall system 

will also fail. 

The fundamental concept of this approach which we 

developed for sensor fusion of multiple targets is that track 

to track correlation is achieved using a global modeling 

approach, exploiting certain results from decentralized 

filtering. The central tracking system processes the track 

estimates formed by local tracking filters rather than the 

original measurement data. The simple decentralized 

filtering structure is shown in Fig. 3. 
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Fig. 3. Decentralized Filter. 

 
The fundamental concept of this approach is that track 

to track correlation is achieved using a global modeling 

approach, exploiting certain results from decentralized 

filtering. The central tracking system processes the track 

estimates formed by local tracking filters rather than the 

original measurement data. The general decentralized 

filtering structure is shown in Fig. 3. 

The formulation of such a situation based on a global 

modeling approach whose details are given below. 

Suppose that there are p distributed sensors in a tracking 

system, total n targets in the surveillance region, and n 

targets seen by the i-th sensor. The global target dynamic 

model and measurement model of the central tracking 

system are defined as [18-25]. 
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The target kinematic models of local tracking systems 

associated with the i-th local sensor are defined as [10-13, 

15-25]. 

 

pitVtXtCtY

tWtGtXtFtX

iiii

iiiii

,,1               ),()()()(      

)()()()()1(




  (3) 

 

Local filter-p 

Local filter 2 

Local filter 1 
Sensor 1 

Sensor 2 

Sensor - p 



168                                                                     Aşkin Demirkol, Zafer Demir, Erol Emre 

 

)(tX i  is the state vector corresponding to the i-th sensor. 

iF  and iG  are the transition matrix and the noise gain 

matrix for the i-th sensor, respectively. iY  is the 

measurement vector received by the i-th sensor. iH  is the 

measurement matrix corresponding to the i-th sensor. iW  

and iV  are system noise and measurement noise 

associated with the targets seen by the i-th sensor, assumed 

to be normally distributed with the zero mean, and 

mutually uncorrelated. Moreover, a mapping matrix is 

defined to associate the local sensors with the central 

processor, which offers the track to track correlation 

information. The relationship is defined as 

 

)()()( tDtHtC iii                           (4) 

 

)(tDi  reflects which of the targets are observed by the i-

th sensor, and is a quantity to be estimated. In addition, in 

order to solve the multi-target tracking problem, a data 

association algorithm denoted 1-step maximum a-

posteriori estimate whose details are applied and briefly 

described here. 

 
2.2 Data Association:1-step maximum a-posteriori  

      estimate 

 

Data association is a general way of finding the tracks 

of the targets. For each ,2,1,0t  once a measurement 

vector is received, the corresponding 1-step a-posteriori 

probability denoted as a weighting coefficient for each 

hypothesis can be obtained from one formula derived as 

follows. Let 
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where 
t  is the vector consisting of uncertain parameters 

and 
t
i  is one possible fixed hypothesis. According to the 

Bayesian rule, the a-posteriori probability of 
t
i  

conditioned on 
1t

i  and 
tY  can be computed as 

follows: 
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where the denominator is a constant chosen for each given 

hypothesis to normalize denoted C/1 , and thus 
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The first term is obtained using the 1-step prediction 

via the Kalman filter based on each hypothesis, and the 

second term reflects a priori statistical knowledge of 
t . 

Thus, the suboptimal Bayesian state estimate can be 

computed as 
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The 1-step conditional maximum a-posteriori estimate of 

)(t  is )(tk , so that Equation (8) is maximum. 

 
2.3 Fusion 
 

The fusion concept is known with various names such 

as data or sensor fusion. Data fusion is the process of 

combining signals from several sensors into a single world 

view. Data fusion techniques combine data from multiple 

sensors, and related information from associated 

databases, to achieve improved accuracies and more 

specific inferences than could be achieved by the use of a 

single sensor alone [26-32]. Fusion is conducted by 

considering the one of the architectures in Fig. 2 or 3 that 

each local sensor performs its own data association and 

estimation for those targets seen by it. 

A time-varying matrix )(tDi  used to associate the 

local processors with the central processor and for track to 

track correlation is defined in our fusion algorithm. The 

)(tDi arises in decentralized filtering which indicates the 

targets are tracked by each individual local sensor. The 

fusion algorithm in the central processor is applied to 

combine the local sensor track results with this matrix. 

Such a matrix is defined as follows: 
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where 
kj

iM
 

 is an n by n block that indicates which 

targets are seen by the i-th sensor, and the n is the order of 

state vector for each target. For example, the jk-th block is 

set to be the identity matrix if the k-th target is seen by this 

sensor. 

In this approach, the estimates can be computed using 

an adaptive filter composed of a bank of Kalman filters, 

which is based on the global model and process all 

measurements. The summary of fusion algorithm with a 

decentralized estimation approach for multi – target 

tracking is shown as follows: 

Suppose that there are p distributed sensors in a 

system, total n targets in the surveillance region, and in  

targets are seen by the i-th sensor. The discrete—time 
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target dynamic model and measurement model of the 

tracking system are defined as [18-25]. 

 

 

Global model : 
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Mapping : 
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Central Combining Filter 
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2.4 Track-to-track vorrelation 

 

In general, the track to track correlation is the way to 

separate the same targets seen by various sensors [33-43]. 

Thus, it is the most important part of the multisensor 

problems. Sometimes it is known with the name of "sensor 

to sensor correlation" As explained in the previous 

sections, in the distributed multisensor problems, each 

local nodes has a data processing system, it processes the 

information from sensors and transforms the result to data 

fusion center. The main task of the data fusion center is to 

process information from different nodes and to judge 

which of tracks are most probably from the same target. 

In the distributed multi-sensor information fusion 

system, the track-to-track correlation is one of the key 

techniques and is also the precondition for implementing 

track fusion, and the correctness of correlation judged 

would directly impact on the performance of the whole 

fusion system. 

The multisensor track-to-track correlation problem of 

track-to-track correlation arises when several sensors carry 

out surveillance over a common volume and each sensor 

has its own data processing system. In such a scenario 

each system has a number of tracks and it is necessary to 

decide whether two tracks from different systems 

represent the same target. 

As for radar problems, in a distributed radar network, 

the spatially distributed radars send their local tracks to the 

fusion center. Because every radar provides multi tracks 

corresponding to multi targets, the entire numbers of local 

tracks sending to fusion center is much larger than the 

numbers of real target. In fusion center, the global tracks 

are created by track fusion based on correlation of these 

local tracks. In this process, multi-track correlation 

problem must be simplified to track-to-track correlation 

problem. The track-to-track correlation problem is 

proposed in [1-5]. In fusion center, the traditional multi-

track correlation method is very time-consuming. High 

computational load is not feasible in engineering practice. 

As we need a new method which can reduce the 

computational load and at the same time can retain the 

track correlation accuracy, here a track to track correlation 

method includes the solution to the emphasized problem is 

investigated by a global approach in the following section. 

 

 

3. Track-to-track correlation for multisensor  
     fusion for multiple targets 
 

One important problem facing a multiple sensor 

tracking system in a multiple target environment is the 

unique identification of targets observed by more than one 
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sensor, if any. The method developed here is to directly 

correlate the set of measurements from the i-th sensor with 

those of other possible sensors. 

We present a global track-to-track correlation 

approach by taking advantage of the proposed multisensor 

fusion techniques in the previous section. The approach is 

developed by conducting the mapping matrix by a various 

way. The sensor-target plane of the approach is as the 

following Fig. 4. 
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Fig. 4. Global view of multisensor - multitarget space. 

 
 

The targets in the figure are first assumed distinct and 

the coordinate system is taken as the cartesian coordinate 

system of the coordinator. The expression of multisensor 

fusion for multiple targets is derived from the following 

general system state-space equations. 
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where )(tX  is the state vector of the targets in the 

spectrum of each sensor, F is the state coefficient, )(tW  

is the process noise with zero-mean Gaussian, )(tY  is the 

system output depicts the targets seen by each sensor, H is 

the coefficient as the transition matrix, and )(tV  is the 

measurement noise with zero-mean Gaussian. As noted, 

once the assumption of the data association process of the 

system parameters as )(tF  and )(tH , they are 

considered in time invariant forms as F and H. 

Here, the proposed global track to track correlation 

approach based on the Fig. 4 is investigated by considering 

the decentralized Kalman architecture as the following 

Fig. 5. 
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Once each sensor estimates locally by the Kalman 

filters, the local outputs are transmitted to the master filter 

to finalize the track to track evaluations. These are 

considered by the assumption of data association process. 

The given equation (27) is decomposed of the locals of the 

system as; 
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Thus, by equation 28,  i is the i-th sensor and  j is the 

j-th target i-th sensor sees. All equations are assumed by 

the the coordinate system of the coordinator. Let write the 

each term of the equation 27 corresponding to the equation 

28 respectively. Let start firstly with the state equations. 
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As seen )1( tX  and )(tW  matrices are formed by 

the field of views of the sensors. Each dashed zone in the 

matrices denotes the n targets seen by p sensors as npx . 

The bold numbers as p21 ,,,   as in form of are used to 

indicate the targets seen by the related numbered sensors. 

Now let organize the expressions above by Equation 

)()()1( tWtFXtX   as 
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(31) 

Let jiQ   be  the process noise matrix of  j-th target 

seen by i-th sensor. Thus, its covariance is written as; 
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Or; 
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Then, let form the steps for the output equations 
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Let organize it by equation )()()( tVtHXtY   
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The expressions in )1( tX and )(tY  are for the 

coordinate system of the coordinator. Let jiR   be the 

measurement noise matrix of  j-th target seen by i-th 

sensor. Thus, its covariance is written as; 
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Or; 
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Mapping matrix 

 

In this work, a mapping matrix is presented using a 

new approach to achieve track to track correlation of 

targets. As stated earlier, in order to solve the track-to 

track correlation problems, iD  matrix which arose in 

decentralized filtering indicates the targets tracked by each 

individual local sensor. Let recall the general form of the 

mapping matrix defined in the global model. 

The iD  arises in decentralized filtering which 

indicates the targets are tracked by each individual local 

sensor. The fusion algorithm in the central processor is 

applied to combine the local sensor track results with this 

matrix. Such a matrix is defined as follows: 

 

nknjDD i
kj
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where 
kj

iM
 

 is an n by n block that indicates which 

targets are seen by the i-th sensor, and the n is the order of 

state vector for each target. 

Here the global mapping matrix is developed as the 

modified case of )(tDi . The new mapping matrix was 

derived by the hypothesizes as a row matrix in form of 

j
iD , where j denotes the hypothesis number and i is the 

number of sensor. The presented mapping matrix was 

conducted for the track to track correlation process. as the 

following. Let make some hypothesis for track-to-track 

correlation procedure. 

Hypothesis 1 : 1HIP  : If all targets are distinct 

Let process the equations by 1HIP . For each sensor 

(i-th sensor), pi ,,2,1   let write the measured 

equation. 
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In this case, If all targets were distinct, the targets 

seen by the first sensor would be unchanged and Equation 

(39) would be as 
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The general representation of this case would be as 
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)()()( 1111 tVtXHtY                         (41) 

 
For global case, the coordinating sensor with all 

targets would be measured as 
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These equations for the second sensor are derived 

from 1HIP . By this hypothesis, 
1
1D  is a row matrix 

which indicates the targets seen only by the first sensor by 

1HIP . In fact, 
j

iD  is a row matrix, j denotes the 

hypothesis number and i is the number of sensor. Items of 

the row matrix consist of n by n dimensional block 

matrices of the targets seen by the sensors. Equation (43) 

reflects the targets seen only by the first sensor. As the 

first sensor does not sees the targets of the other sensors, 

the items in 
1
1D  row matrix belonged to the other sensors 

consist of zero blocks. Because, by the assumed 

hypothesis, the targets are distinct and the sensors does not 

see the targets out of the view of their fields. By 1HIP  

Equation (41) can be written with respect to the global 

state as the following 
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where, 

 
1
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1
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As noted, the time varying mapping matrix, )(tD  

defined earlier, now is in a time invariant form as 
k
iD  due 

to the assumption of the data association process. If we 

take 
k
iD , where k denotes the hypothesis number and $i$ 

denotes the sensor number. For example 
1
2D  indicates the 

targets seen by the second sensor by the first hypothesis. 

Hence, the following can be written. 

 
k
ii

k
i DHC                                  (46) 

In general 
k
iC  can be written as iC  as mapping 

matrix which is defined to associate the local sensors with 

the central processors, which offers the track-to track 

correlation information. Thus, the general view of the 

mapping matrix is as 

 

iii DHC                                 (47) 

 

where iD  reflects which of the targets are observed by the 

i-th sensor. Now considering 1HIP , let make the same 

steps for the second sensor. If all targets were distinct, the 

equation for the second sensor would be as 
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 (48) 

 

The general representation of this case would be as 
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For global case, the coordinating sensor with all 

targets would be measured as 
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By 1HIP , Equation (49) can be written with respect 

to the global state as the following 
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As can be seen, 
1
2D  is a row matrix which indicates 

the targets seen only by the second sensor. In fact, we 

know also that 
1
2D  is a row matrix whose items consist of 

n by n dimensional block matrices of the targets seen by 

the sensors. As realized in 
1
2D  row matrix, except the 

second senor, items of the other sensors are empty (zero). 

Because the second sensor does not see the targets seen by 

the other sensors. The row matrix shows only the targets 

seen by the second sensor. Because all sensors see distinct 

targets by 1HIP . 
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For simplicity of exposition assume that all )(tX j  

have dimension $n$. Then I in (48) is of the form as 
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In other words, 
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Or; 
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The expanded case of Equation (51) can be written as 
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(56) 

 

As stated, Equation (56) indicates that the targets are 

observed only by the second sensor. For example, this 

equation does not show that the first target is also seen by 

the first sensor. By 1HIP , the first sensor cannot observe 

the targets seen by the second sensor. In other words, the 

first and second sensor does not see the first or the same 

target simultaneously. 

Now, let consider the second hypothesis, 2HIP  as 

2HIP  : The targets with the nearest trajectories are 

the same.  

Let assume 2HIP  that the first target seen by both 

first sensor and second sensor is same. Then, as the 

equations of the first and the other sensors remain 

unchanged, the equation of the second sensor is modified 

as 
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In other words, 
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where 
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Thus, 
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If consider (57) it will be realized that, the second 

sensor sees the first target seen by the first sensor. In other 

words, both the first and second sensors observe the first 

target simultaneously. Whereas Equation (56) does not 

denote any nI  block for the first sensor, the same 

equation consists of nI  blocks which indicates the distinct 

targets of the second sensor. From 
1
2D  parts of Equations 

(56) and (57), the following (first) column 

 

  000  :::: nI           (61) 

 

in Equation (56) of 
1
2D  for the second sensor is replaced 

by the following (first) column (zero column) 

 

  0000  ::::            (62) 

 

in Equation (57}) of 
1
2D  for the first sensor. Hence, when 

considers overall Equation (57), it provides two 

information. Firstly it denotes all targets seen by the 

second sensor. In addition, it emphasis on the first target 

which is observed jointly by the first sensor. As a result, 

when check the Equation  (57) or its part of 
1
2D , distinct 

and joint targets shared by the other sensors can be 

observed. Maybe (57) could alternatively be written as in 

the following form 
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(63) 

 

This can be evaluated as the slightly modified form of 

1
2D . Equation (57) seems more efficient compared to the 

the last equation (63) in terms of the practical. Because, if 

1
2D  in  (57) is assumed a look-up table, it can be able to 

give a knowledge on both seen the distinct and joint 

targets of the second sensor. The equation (57) provides 
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this by an additional information on the sensor (s), which 

observe the related joint target. 

Other possible hypothesis NHIPHIPHIP ,,, 43   

can be represented as described above for 1HIP  and 

2HIP , by proper choices of 
k
j

k
j DC ,  matrices for those 

sensors which see the same target. Thus, each hypothesis 

(say k-th) a global system representation for data as 
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where 

 

k
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k
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Now we can apply the formulas for decentralized 

Kalman filtering to obtain a filter for each global state for 

each hypothesis.  

For each such kHIP  let kθ
~

 be the corresponding 

global system representation (parameters). For each kθ
~

 

(hypothesis), check the innovations (residual) process 
k
i  

for the corresponding Kalman filter for whiteness. If kθ
~

 

represents the actual data (i.e., if it is correct) then the 

corresponding residual process must be white noise. Using 

tests such as chi-square test and/or several developed fault 

detection techniques, we can eliminate some of these kθ
~

's 

(those for which the innovations process does not pass the 

whiteness test). 

Let Mi θ,,θ   be the hypothesis which pass the 

whiteness test. Now we can use wellknown recursive 

formulas for estimating. 

 

))0(,),1(),(|(θ YtYtYP k             (66) 

 

as well as 

 

)θ|)0(,),(( kYtYP                      (67) 

 

The kθ  which maximizes (66) and (67) gives us the 

maximum a posteriori (maximum likelihood) estimate of 

true value of kθ 's (i.e., the true hypothesis). See [Ref:20}, 

Chapter 8] for details. 

 

 
4. Conclusion 
 

Physical systems are often subjected to unexpected 

changes, such as component failures and variations in 

operating condition, that tend to degrade overall system 

performance. These changes called as “failures”. The 

failures in each case are a defect to reduce a system's 

effectiveness [47-49]. In order to maintain a high level of 

performance, it is important that failures be promptly 

detected and identified so that appropriate remedies can be 

applied. Over the past decade numerous approaches to the 

problem of failure detection and identification (FDI) in 

dynamical systems have been developed; detection filters, 

the generalized likelihood ratio (GLR) method and the 

multiple model methods are some examples [44-49]. Ones 

that fail are discarded first. 

As for the multisensor fusion problems, several track 

to track correlation hypotheses are first tested using failure 

detection techniques. Among those which do not fail, we 

choose that hypothesis to be the correct one by using 

maximum likelihood and/or maximum a posteriori 

estimation techniques. 
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